1. Use reference to hydrogen bonding to explain the high specific heat capacity of water.
2. Now let's use the formula shown on the right. Using information contained in table 1 complete the following exercises.
i. Calculate the amount, in kJ, of energy needed to raise the temperature of 500.0 g of water at $25.0^{\circ} \mathrm{C}$ to $50.0^{\circ} \mathrm{C}$.

$\mathbf{E}=\mathbf{c} \mathbf{X} \mathbf{m} \mathbf{X} \Delta T$

$\mathrm{E}=$ energy (joules)

$\mathrm{m}=$ mass in grams
$\Delta T=$ change in temperature
$c=$ the specific heat capacity of the substance
ii. What is the final temperature of a 50.0 g sample of pure water at $25.0^{\circ} \mathrm{C}$ if 0.500 kJ of energy is supplied to it.
iii. $\quad 322$ joules of energy is supplied to a sample of water of unknown mass at $34.2^{\circ} \mathrm{C}$. Calculate the mass, in grams, of the water if the final temperature is $51.2^{\circ} \mathrm{C}$.

Substance	c in J/g $/ \mathrm{c}$.
Aluminum	0.900
Bismuth	0.123
Copper	0.386
Water	4.186
Gold	0.126

iv. Consider a 500 g sample of pure water at $78^{\circ} \mathrm{C}$ in a cup that cools to $25^{\circ} \mathrm{C}$.
a. Will the person, holding the cup of water, feel their hand cooling or warming up. Explain your answer
b. Calculate the amount of energy, in kilojoules, involved .
3. 300 g of hot tea at $85^{\circ} \mathrm{C}$ is poured into a glass containing 200 g of water at $25^{\circ} \mathrm{C}$. What is the temperature of the mixture of the two liquids? Assume no energy is lost and that the hot tea can be considered as being pure water.

4. Calculate the amount of energy, in kJ , that needs to be supplied to a 200.0 g mass of ice at $-200^{\circ} \mathrm{C}$ to vaporise all the water molecules at $100^{\circ} \mathrm{C}$. Latent heat of vaporisation of water is $2,260 \mathrm{~kJ} / \mathrm{kg}$ while the latent heat of fusion of water is $334 \mathrm{~kJ} / \mathrm{kg}$. Specific heat of liquid water is $4.18 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$ while the specific heat of ice is $2.108 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$.

